Source code for cromosim.domain

# Authors:
#     Sylvain Faure <sylvain.faure@universite-paris-saclay.fr>
#     Bertrand Maury <bertrand.maury@universite-paris-saclay.fr>
# License: GPL

import numpy as np
import scipy as sp
import sys
import matplotlib.pyplot as plt

from matplotlib.patches import Ellipse, Circle, Rectangle, Polygon
from matplotlib.lines import Line2D
from PIL import Image
from PIL import ImageDraw
import skfmm


[docs] class Destination(): """ A Destination object contains all the information necessary to direct people to a goal, for example a door, a staircase or another floor. Attributes ---------- name: string name of the destination colors: list List of colors ``[ [r,g,b],... ]`` drawing the destination. For example, a door can be represented by a red line. excluded_colors: list List of colors ``[ [r,g,b],... ]`` representing obstacles that cannot be crossed for someone wishing to go to this destination: the walls of course, but possibly another objects only visible to the people concerned by this destination. desired_velocity_from_color: list Allows you to associate a desired velocity (vx, vy) with a color (r, g, b): ``[ [r,g,b, vx,vy],... ]``. fmm_speed: numpy array To automatically calculate the desired velocity leading to this destination, a Fast-Marching method is used to calculate the travel time to this destination. The opposite of the gradient of this time gives the desired velocity. This method solves the Eikonal equation ``|grad D| = 1/fmm_speed``. By changing the ``fmm_speed`` (1 everywhere by default) you can make certain areas slower and thus modify the desired velocity to divert people velocity_scale: float Multiplying coefficient used in front of the desired velocity vector (which is renormalized). For example on a staircase one may wish to reduce the speed of people. next_destination: string Name of the next destination. Useful for linking destinations one after the other next_domain: string Name of the next domain where is the next_destination next_transit_box: list The people in the current domain present in this box will be duplicated in the next_domain. A box is defined by four points: ``[x0, y0, x1, y1, x2, y2, x3, y3]`` distance: numpy array Distance (if ``fmm_speed`` == 1) or travel time (if ``fmm_speed`` != 1) to the destination desired_velocity_X: numpy array First component of the desired velocity desired_velocity_Y: numpy array Second component of the desired velocity Examples -------- * Examples with one destination: ``cromosim/examples/domain/domain_room.py`` ``cromosim/examples/domain/domain_stadium.py`` * Example with several destinations: ``cromosim/examples/domain/domain_shibuya_crossing.py`` * Example with a destination described in a json file ``cromosim/examples/domain/domain_from_json.py`` """ def __init__(self, name, colors, excluded_colors=[], desired_velocity_from_color=[], fmm_speed=None, velocity_scale=1, next_destination=None, next_domain=None, next_transit_box=None): """ Constructor of a Destination object Parameters ---------- name: string name of the destination colors: list ``[ [r,g,b],... ]`` List of colors drawing the destination. For example, a door can be represented by a red line. excluded_colors: = list ``[ [r,g,b],... ]`` List of colors representing obstacles that cannot be crossed for someone wishing to go to this destination: the walls of course, but possibly another objects only visible to the people concerned by this destination. desired_velocity_from_color: list ``[ [r,g,b, vx,vy],... ]`` Allows you to associate a desired velocity (vx, vy) with a color (r, g, b) fmm_speed:= numpy array To automatically calculate the desired velocity leading to this destination, a Fast-Marching method is used to calculate the travel time to this destination. The opposite of the gradient of this time gives the desired velocity. This method solves the Eikonal equation |grad D| = 1/fmm_speed. By changing the fmm_speed (1 everywhere by default) you can make certain areas slower and thus modify the desired velocity to divert people velocity_scale: float Multiplying coefficient used in front of the desired velocity vector (which is renormalized). For example on a staircase one may wish to reduce the speed of people. next_destination: string Name of the next destination. Useful for linking destinations one after the other next_domain: Name of the next domain where is the next_destination next_transit_box: The people in the current domain present in this box will be duplicated in the ``next_domain``. """ self.name = name self.colors = colors self.excluded_colors = excluded_colors self.desired_velocity_from_color = desired_velocity_from_color self.fmm_speed = fmm_speed self.velocity_scale = velocity_scale self.next_destination = next_destination self.next_transit_box = next_transit_box # [xmin,xmax,ymin,ymax] self.next_domain = next_domain self.distance = None self.desired_velocity_X = None self.desired_velocity_Y = None def __str__(self): """ Print this Destination object """ return "--> Destination: " \ + "\n name: "+str(self.name) \ + "\n colors: "+str(self.colors) \ + "\n excluded_colors: "+str(self.excluded_colors) \ + "\n desired_velocity_from_color: "+str(self.desired_velocity_from_color) \ + "\n next_destination: "+str(self.next_destination) \ + "\n next_domain: "+str(self.next_domain) \ + "\n velocity_scale: "+str(self.velocity_scale)
[docs] class Domain(): """ To define the computational domain: * a background: empty (white) or a PNG image which only contains the colors white, red (for the doors) and black (for the walls) * supplementary doors represented by matplotlib shapes: ``line2D`` * supplementary walls represented by matplotlib shapes: ``line2D``, ``circle``, ``ellipse``, ``rectangle`` or ``polygon`` To compute the obstacle distances and the desired velocities Attributes ---------- pixel_size: float size of a pixel in meters width: int width of the background image (number of pixels) height: int height of the background image (number of pixels) xmin: float x coordinate of the origin (bottom left corner) xmax: float ``xmax = xmin + width*pixel_size`` ymin: float y coordinate of the origin (bottom left corner) ymax: float ``ymax = ymin + height*pixel_size`` X: numpy array x coordinates (meshgrid) Y: numpy array y coordinates (meshgrid) image: numpy array pixel array (r,g,b,a) The Pillow image is converted to a numpy arrays, then using ``flipud`` the origin of the image is put it down left instead the top left image_red: numpy array red values of the image (r,g,b,a) image_green: numpy array green values of the image (r,g,b,a) image_blue: numpy array blue values of the image (r,g,b,a) wall_mask: numpy array boolean array: true for wall pixels wall_mask_id: numpy array wall pixel indices wall_distance: numpy array distance (m) to the wall wall_grad_X: numpy array gradient of the distance to the wall (first component) wall_grad_Y: numpy array gradient of the distance to the wall (second component) door_distance: numpy array distance (m) to the door desired_velocity_X: numpy array opposite of the gradient of the distance to the door: desired velocity (first component) desired_velocity_Y: numpy array opposite of the gradient of the distance to the door: desired velocity (second component) Examples -------- * A simple room ``cromosim/examples/domain/domain_room.py`` * A circular domain ``cromosim/examples/domain/domain_stadium.py`` * A domain with several destinations ``cromosim/examples/domain/domain_shibuya_crossing.py`` * A domain built from json file (where is its description) ``cromosim/examples/domain/domain_from_json.py`` """ def __init__(self, name='Domain', background='White', pixel_size=1.0, xmin=0.0, width=100, ymin=0.0, height=100, wall_colors=[[0, 0, 0]], npzfile=None): """ Constructor of a Domain object Parameters ---------- name: string domain name (default: 'Domain') background: string name of the background image (default: 'White', no image) pixel_size: float size of a pixel in meters (default: 1.0) xmin: float x coordinate of the origin, bottom left corner (default: 0.0) ymin: float y coordinate of the origin, bottom left corner (default: 0.0) width: int width of the background image (default: 100 pixels) height: int height of the background image (default: 100 pixels) npzfile: string to build domain from a npz file which contains all variables """ if (npzfile is None): self.__shapes = [] self.__outline_color_shapes = [] self.__fill_color_shapes = [] self.__image_filename = '' self.name = name self.__background = background self.destinations = None self.pixel_size = pixel_size self.xmin, self.ymin = [xmin, ymin] if (self.__background != 'White'): self.image = Image.open(self.__background) self.width = self.image.size[0] self.height = self.image.size[1] else: self.width, self.height = [width, height] self.image = Image.new("RGB", (self.width, self.height), "white") self.xmax = self.xmin + self.width*pixel_size self.ymax = self.ymin + self.height*pixel_size self.X, self.Y = np.meshgrid(np.arange(self.width), np.arange(self.height)) self.X = 0.5*self.pixel_size + self.xmin + self.X*self.pixel_size self.Y = 0.5*self.pixel_size + self.ymin + self.Y*self.pixel_size self.wall_colors = wall_colors # walls are black by default self.wall_mask = None self.wall_id = None self.wall_distance = None self.wall_grad_X = None self.wall_grad_Y = None self.draw = ImageDraw.Draw(self.image) else: data = np.load(npzfile, allow_pickle=True) self.__shapes = data["__shapes"].tolist() self.__outline_color_shapes = data["__outline_color_shapes"].tolist() self.__fill_color_shapes = data["__fill_color_shapes"].tolist() self.__image_filename = data["__image_filename"] # print("read name: ",data["name"]) self.name = str(data["name"]) # print("read __background: ",data["__background"]) self.__background = str(data["__background"]) # print("read destinations: ",data["destinations"]) self.destinations = dict(data["destinations"].tolist()) # print("read pixel_size: ",data["pixel_size"]) self.pixel_size = data["pixel_size"] # print("read xmin: ",data["xmin"]) self.xmin = data["xmin"] # print("read ymin: ",data["ymin"]) self.ymin = data["ymin"] # print("read xmax: ",data["xmax"]) self.xmax = data["xmax"] # print("read ymax: ",data["ymax"]) self.ymax = data["ymax"] # print("read width: ",data["width"]) self.width = data["width"] # print("read height: ",data["height"]) self.height = data["height"] # print("read X: ",data["X"]) self.X = data["X"] # print("read Y: ",data["Y"]) self.Y = data["Y"] # print("read wall_colors: ",data["wall_colors"]) self.wall_colors = data["wall_colors"] # print("read wall_mask: ",data["wall_mask"]) self.wall_mask = data["wall_mask"] # print("read wall_id: ",data["wall_id"]) self.wall_id = data["wall_id"] # print("read wall_distance: ",data["wall_distance"]) self.wall_distance = data["wall_distance"] # print("read wall_grad_X: ",data["wall_grad_X"]) self.wall_grad_X = data["wall_grad_X"] # print("read wall_grad_Y: ",data["wall_grad_Y"]) self.wall_grad_Y = data["wall_grad_Y"] self.image = data["image"]
[docs] def save(self, outfile): """To save the content of the domain in a file Parameters ---------- outfile: string output filename """ np.savez( outfile, __shapes=self.__shapes, __outline_color_shapes=self.__outline_color_shapes, __fill_color_shapes=self.__fill_color_shapes, __image_filename=self.__image_filename, name=self.name, __background=self.__background, pixel_size=self.pixel_size, xmin=self.xmin, ymin=self.ymin, xmax=self.xmax, ymax=self.ymax, width=self.width, height=self.height, X=self.X, Y=self.Y, wall_colors=self.wall_colors, wall_mask=self.wall_mask, wall_id=self.wall_id, wall_distance=self.wall_distance, wall_grad_X=self.wall_grad_X, wall_grad_Y=self.wall_grad_Y, destinations=self.destinations, image=self.image)
[docs] def add_shape(self, shape, outline_color=[0, 0, 0], fill_color=[255, 255, 255]): """To add a matplotlib shape: ``line2D``, ``circle``, ``ellipse``, ``rectangle`` or ``polygon`` Parameters ---------- shape: matplotlib shape line2D, circle, ellipse, rectangle or polygon outline_color: list rgb color fill_color: list rgb color """ self.__shapes.append(shape) self.__outline_color_shapes.append(outline_color) self.__fill_color_shapes.append(fill_color) if (isinstance(shape, Circle) or isinstance(shape, Ellipse) or isinstance(shape, Rectangle) or isinstance(shape, Polygon)): xy = shape.get_verts()/self.pixel_size xy[:, 1] = self.height - xy[:, 1] self.draw.polygon( np.around(xy.flatten()).tolist(), outline="rgb("+str(outline_color[0])+"," + str(outline_color[1])+"," + str(outline_color[2])+")", fill="rgb("+str(fill_color[0])+"," + str(fill_color[1])+"," + str(fill_color[2])+")") linewidth = shape.get_linewidth() self.draw.line( np.around(xy.flatten()).tolist(), width=int(linewidth), fill="rgb("+str(outline_color[0])+"," + str(outline_color[1])+"," + str(outline_color[2])+")") elif isinstance(shape, Line2D): linewidth = shape.get_linewidth() xy = shape.get_xydata()/self.pixel_size xy[:, 1] = self.height - xy[:, 1] self.draw.line( np.around(xy.flatten()).tolist(), width=int(linewidth), fill="rgb("+str(outline_color[0])+"," + str(outline_color[1])+"," + str(outline_color[2])+")")
[docs] def build_domain(self): """To build the domain: reads the background image (if supplied) \ and initializes all the color arrrays """ self.__image_filename = self.name+'_domain.png' self.image.save(self.__image_filename) # Easy way to convert a Pillow image to numpy arrays... # The origin of img is at the top (left) and flipud allows to put it down... self.image = np.flipud(np.array(self.image)) self.image_red = self.image[:, :, 0] self.image_green = self.image[:, :, 1] self.image_blue = self.image[:, :, 2] self.wall_mask = np.zeros_like(self.image_red) for c in self.wall_colors: self.wall_mask += (self.image_red == c[0]) \ * (self.image_green == c[1]) \ * (self.image_blue == c[2]) self.wall_id = np.where(self.wall_mask > 0) # Compute wall distances: wall = "wall_colors" pixels if (self.wall_id[0].size > 0): self.compute_wall_distance() else: print("WARNING: Failed to compute wall distance!") print("WARNING: Wall colors are ", self.wall_colors) print("WARNING: Check that there are pixels with these colors!") sys.exit()
[docs] def compute_wall_distance(self): """To compute the geodesic distance to the walls in using a fast-marching method """ phi = np.ones(self.image_red.shape) if (len(self.wall_id[0]) > 0): phi[self.wall_id] = 0 self.wall_distance = skfmm.distance(phi, dx=self.pixel_size) grad = np.gradient(self.wall_distance, edge_order=2) grad_X = grad[1]/self.pixel_size grad_Y = grad[0]/self.pixel_size norm = np.sqrt(grad_X**2+grad_Y**2) norm = (norm > 0) * norm + (norm == 0) * 0.001 self.wall_grad_X = grad_X/norm self.wall_grad_Y = grad_Y/norm else: self.wall_distance = 1.0e99*np.ones(self.image_red.shape)
[docs] def add_destination(self, dest): """To compute the desired velocities to this destination and then to add this Destination object to this domain. Parameters ---------- dest: Destination contains the Destination object which must be added to this domain """ # Compute mask for dest.excluded_colors (which can be for example the # wall colors...) excluded_color_mask = np.zeros_like(self.image_red) for c in dest.excluded_colors: excluded_color_mask += (self.image_red == c[0]) \ * (self.image_green == c[1]) \ * (self.image_blue == c[2]) excluded_color_id = np.where(excluded_color_mask > 0) # Compute mask for dest.colors (which correspond which correspond to # the destination of the people) dest_mask = np.zeros_like(self.image_red) for ic, rgb in enumerate(dest.colors): dest_mask = (self.image_red == rgb[0]) \ * (self.image_green == rgb[1]) \ * (self.image_blue == rgb[2]) mask_id = np.where((dest_mask >= 1)) # Define rhs of the Eikonal equation (i.e. the speed) if (dest.fmm_speed is not None): if (dest.fmm_speed.shape != self.image_red.shape): print("Bad speed shape ! Failed to compute the destination distance...") sys.exit() else: dest.fmm_speed = np.ones_like(self.image_red) if (mask_id[0].size > 0): dest_mask[mask_id] = True phi = np.ones(self.image_red.shape) phi[mask_id] = 0 phi = np.ma.MaskedArray(phi, mask=excluded_color_mask) dest.distance = skfmm.travel_time(phi, dest.fmm_speed, dx=self.pixel_size) # dest.distance = skfmm.distance(phi, dx=self.pixel_size) if (excluded_color_id[0].size > 0): tmp_dist = dest.distance.filled(9999) else: tmp_dist = dest.distance grad = np.gradient(tmp_dist, edge_order=2) else: dest.distance = -np.ones_like(self.image_red) grad = np.gradient(np.zeros_like(self.image_red), edge_order=2) for rgbgrad in dest.desired_velocity_from_color: test = (self.image_red == int(rgbgrad[0])) \ * (self.image_green == int(rgbgrad[1])) \ * (self.image_blue == int(rgbgrad[2])) indices = np.where(test) grad[1][indices] = -rgbgrad[3] grad[0][indices] = -rgbgrad[4] grad_X = -grad[1]/self.pixel_size grad_Y = -grad[0]/self.pixel_size norm = np.sqrt(grad_X**2+grad_Y**2) norm = (norm > 0)*norm + (norm == 0)*0.001 dest.desired_velocity_X = grad_X/norm dest.desired_velocity_Y = grad_Y/norm try: self.destinations[dest.name] = dest except: self.destinations = {dest.name: dest}
[docs] def people_desired_velocity(self, xyr, people_dest, II=None, JJ=None): """This function determines people desired velocities from the desired \ velocity array computed by Domain thanks to a fast-marching method. Parameters ---------- xyr: numpy array people coordinates and radius: x,y,r people_dest: list of string destination for each individual II: numpy array (None by default) people index i JJ: numpy array (None by default) people index j Returns ------- II: numpy array people index i JJ: numpy array people index j Vd: numpy array people desired velocity """ if ((II is None) or (JJ is None)): II = np.floor((xyr[:, 1]-self.ymin-0.5*self.pixel_size)/self.pixel_size).astype(int) JJ = np.floor((xyr[:, 0]-self.xmin-0.5*self.pixel_size)/self.pixel_size).astype(int) Vd = np.zeros((xyr.shape[0], 2)) for dest_name in np.unique(people_dest): ind = np.where(np.array(people_dest) == dest_name)[0] scale = self.destinations[dest_name].velocity_scale Vd[ind, 0] = xyr[ind, 3]*scale*self.destinations[dest_name].desired_velocity_X[II[ind], JJ[ind]] Vd[ind, 1] = xyr[ind, 3]*scale*self.destinations[dest_name].desired_velocity_Y[II[ind], JJ[ind]] return II, JJ, Vd
[docs] def people_target_distance(self, xyr, people_dest, II=None, JJ=None): """This function determines distances to the current target for all people Parameters ---------- xyr: numpy array people coordinates and radius: ``x,y,r`` people_dest: list of string destination for each individual II: numpy array (None by default) people index ``i`` JJ: numpy array (None by default) people index ``j`` Returns ------- II: numpy array people index i JJ: numpy array people index j D: numpy array distances to the current target """ if ((II is None) or (JJ is None)): II = np.floor((xyr[:, 1]-self.ymin-0.5*self.pixel_size)/self.pixel_size).astype(int) JJ = np.floor((xyr[:, 0]-self.xmin-0.5*self.pixel_size)/self.pixel_size).astype(int) D = np.zeros(xyr.shape[0]) for dest_name in np.unique(people_dest): ind = np.where(np.array(people_dest) == dest_name)[0] D[ind] = self.destinations[dest_name].distance[II[ind], JJ[ind]]-xyr[ind, 2] return II, JJ, D
[docs] def people_wall_distance(self, xyr, II=None, JJ=None): """This function determines distances to the nearest wall for all people Parameters ---------- xyr: numpy array people coordinates and radius: ``x,y,r`` II: numpy array (None by default) people index ``i`` JJ: numpy array (None by default) people index ``j`` Returns ------- II: numpy array people index ``i`` JJ: numpy array people index ``j`` D: numpy array distances to the nearest wall """ if ((II is None) or (JJ is None)): II = np.floor((xyr[:, 1]-self.ymin-0.5*self.pixel_size)/self.pixel_size).astype(int) JJ = np.floor((xyr[:, 0]-self.xmin-0.5*self.pixel_size)/self.pixel_size).astype(int) D = self.wall_distance[II, JJ]-xyr[:, 2] return II, JJ, D
[docs] def plot(self, id=1, title="", savefig=False, filename='fig.png', dpi=150): """To plot the computational domain Parameters ---------- id: integer Figure id (number) title: string Figure title savefig: boolean writes the figure as a png file if true filename: string png filename used to write the figure dpi: integer number of pixel per inch for the saved figure """ fig = plt.figure(id) ax1 = fig.add_subplot(111) ax1.imshow(self.image, interpolation='nearest', extent=[self.xmin, self.xmax, self.ymin, self.ymax], origin='lower') # plt.savefig('.png',dpi=dpi) # ax1.axes.get_xaxis().set_visible(False) # ax1.axes.get_xaxis().set_visible(False) ax1.set_axis_off() ax1.set_title(title) # fig.add_axes(ax1) plt.draw() if (savefig): fig.savefig(filename, dpi=dpi, bbox_inches='tight', pad_inches=0)
[docs] def plot_wall_dist(self, step=10, scale=10, scale_units='inches', id=1, title="", savefig=False, filename='fig.png', dpi=150): """To plot the wall distances Parameters ---------- id: integer Figure id (number) title: string Figure title savefig: boolean writes the figure as a png file if true filename: string png filename used to write the figure dpi: integer number of pixel per inch for the saved figure """ fig = plt.figure(id) ax1 = fig.add_subplot(111) ax1.imshow(self.image, interpolation='nearest', extent=[self.xmin, self.xmax, self.ymin, self.ymax], origin='lower') ax1.imshow(self.wall_distance, interpolation='nearest', extent=[self.xmin, self.xmax, self.ymin, self.ymax], alpha=0.7, origin='lower') ax1.quiver(self.X[::step, ::step], self.Y[::step, ::step], self.wall_grad_X[::step, ::step], self.wall_grad_Y[::step, ::step], scale=scale, scale_units=scale_units) ax1.set_axis_off() ax1.set_title(title) # plt.savefig('.png',dpi=dpi) plt.draw() if (savefig): fig.savefig(filename, dpi=dpi, bbox_inches='tight', pad_inches=0)
[docs] def plot_desired_velocity(self, destination_name, step=10, scale=10, scale_units='inches', id=1, title="", savefig=False, filename='fig.png', dpi=150): """To plot the desired velocity Parameters ---------- destination_name: string name of the considered destination step: integer draw an arrow every step pixels scale: integer scaling for the quiver arrows scale_units: string unit name for quiver arrow scaling id: integer Figure id (number) title: string Figure title savefig: boolean writes the figure as a png file if true filename: string png filename used to write the figure dpi: integer number of pixel per inch for the saved figure """ fig = plt.figure(id) ax1 = fig.add_subplot(111) ax1.imshow(self.image, interpolation='nearest', extent=[self.xmin, self.xmax, self.ymin, self.ymax], origin='lower') ax1.imshow(self.destinations[destination_name].distance, interpolation='nearest', extent=[self.xmin, self.xmax, self.ymin, self.ymax], alpha=0.7, origin='lower') ax1.quiver(self.X[::step, ::step], self.Y[::step, ::step], self.destinations[destination_name].desired_velocity_X[::step, ::step], self.destinations[destination_name].desired_velocity_Y[::step, ::step], scale=scale, scale_units=scale_units) ax1.set_title(title) # plt.savefig('.png',dpi=dpi) ax1.set_axis_off() plt.draw() if (savefig): fig.savefig(filename, dpi=dpi, bbox_inches='tight', pad_inches=0)
def __str__(self): """To print the main caracteristics of a Domain object """ return "--> "+self.name \ + ":\n dimensions: ["+str(self.xmin)+","+str(self.xmax)+"]x[" \ + str(self.ymin)+","+str(self.ymax)+"]" \ + "\n width: "+str(self.width)+" height: "+str(self.height) \ + "\n background image: "+str(self.__background) \ + "\n image of the domain: "+str(self.__image_filename) \ + "\n wall_colors: "+str(self.wall_colors) \ + "\n destinations: "+str(self.destinations)